Simplifier `P(x) = 2(1-cos^2(x+{pi}/2)) -cos(pi-x)sin(pi+x)`
On a `P(x) = 2(1-cos^2(x+{pi}/2)) -cos(pi-x)sin(pi+x)`
Comme `cos^2x+sin^2x= 1 `
`=> 1-cos^2(x+{pi}/2) = sin^2(x+(pi)/2) `
` = cos^2x ` car et `sin(x+{pi}/2)=cosx`
Comme `cos(pi- x) = -cosx` et `sin(pi +x) = -sinx`
`=> cos(pi-x)sin(pi+x) = -cosx xx (-sinx ) = cosx xx sinx `
alors `P(x) = 2sin^2(x+{pi}/2) -[-(cosx)(-sinx)] `
`=> P(x) = 2cos^2x -sinxxxcosx `
Calculons de `P(0)`
on a ` P(0) = cos0( 2cos0-sin0) `
or `cos(0) = 1 ` et `sin(0)=0`
alors `P(0) = 1xx(2xx1-0) = 1xx2=2`
Calculons `P((pi)/4)`
on a ` P((pi)/4) = cos((pi)/4)( 2cos((pi)/4)-sin((pi)/4)) `
or `cos((pi)/4) = sin((pi)/4) = (sqrt(2))/2 `
` => P((pi)/4) = (sqrt(2))/2( (2sqrt(2))/2-(sqrt(2))/2) = 2/4 =1/2 `